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ABSTRACT
The use of end-to-end data mining methodologies such as CRISP-DM, KDD process,
and SEMMA has grown substantially over the past decade. However, little is known
as to how these methodologies are used in practice. In particular, the question of
whether data mining methodologies are used ‘as-is’ or adapted for specific purposes,
has not been thoroughly investigated. This article addresses this gap via a systematic
literature review focused on the context in which data mining methodologies are
used and the adaptations they undergo. The literature review covers 207 peer-
reviewed and ‘grey’ publications. We find that data mining methodologies are
primarily applied ‘as-is’. At the same time, we also identify various adaptations of
data mining methodologies and we note that their number is growing rapidly.
The dominant adaptations pattern is related to methodology adjustments at a
granular level (modifications) followed by extensions of existing methodologies
with additional elements. Further, we identify two recurrent purposes for adaptation:
(1) adaptations to handle Big Data technologies, tools and environments
(technological adaptations); and (2) adaptations for context-awareness and for
integrating data mining solutions into business processes and IT systems
(organizational adaptations). The study suggests that standard data mining
methodologies do not pay sufficient attention to deployment issues, which play a
prominent role when turning data mining models into software products that are
integrated into the IT architectures and business processes of organizations. We
conclude that refinements of existing methodologies aimed at combining data,
technological, and organizational aspects, could help to mitigate these gaps.

Subjects Data Mining and Machine Learning, Data Science
Keywords Data mining, CRISP-DM, Literature review, Data mining methodology

INTRODUCTION
The availability of Big Data has stimulated widespread adoption of data mining and data
analytics in research and in business settings (Columbus, 2017). Over the years, a certain
number of data mining methodologies have been proposed, and these are being used
extensively in practice and in research. However, little is known about what and how
data mining methodologies are applied, and it has not been neither widely researched
nor discussed. Further, there is no consolidated view on what constitutes quality of
methodological process in data mining and data analytics, how data mining and data
analytics are applied/used in organization settings context, and how application practices
relate to each other. That motivates the need for comprehensive survey in the field.
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There have been surveys or quasi-surveys and summaries conducted in related fields.
Notably, there have been two systematic systematic literature reviews; Systematic
Literature Review, hereinafter, SLR is the most suitable and widely used research method
for identifying, evaluating and interpreting research of particular research question, topic
or phenomenon (Kitchenham, Budgen & Brereton, 2015). These reviews concerned
Big Data Analytics, but not general purpose data mining methodologies. Adrian et al.
(2004) executed SLR with respect to implementation of Big Data Analytics (BDA),
specifically, capability components necessary for BDA value discovery and realization.
The authors identified BDA implementation studies, determined their main focus areas,
and discussed in detail BDA applications and capability components. Saltz & Shamshurin
(2016) have published SLR paper on Big Data Team Process Methodologies. Authors
have identified lack of standard in regards to how Big Data projects are executed,
highlighted growing research in this area and potential benefits of such process standard.
Additionally, authors synthesized and produced list of 33 most important success factors
for executing Big Data activities. Finally, there are studies that surveyed data mining
techniques and applications across domains, yet, they focus on data mining process
artifacts and outcomes (Madni, Anwar & Shah, 2017; Liao, Chu & Hsiao, 2012), but not on
end-to-end process methodology.

There have been number of surveys conducted in domain-specific settings such as
hospitality, accounting, education, manufacturing, and banking fields. Mariani et al.
(2018) focused on Business Intelligence (BI) and Big Data SLR in the hospitality and
tourism environment context. Amani & Fadlalla (2017) explored application of data
mining methods in accounting while Romero & Ventura (2013) investigated educational
data mining. Similarly, Hassani, Huang & Silva (2018) addressed data mining application
case studies in banking and explored them by three dimensions—topics, applied
techniques and software. All studies were performed by the means of systematic literature
reviews. Lastly, Bi & Cochran (2014) have undertaken standard literature review of Big
Data Analytics and its applications in manufacturing.

Apart from domain-specific studies, there have been very few general purpose surveys
with comprehensive overview of existing data mining methodologies, classifying and
contextualizing them. Valuable synthesis was presented by Kurgan & Musilek (2006) as
comparative study of the state-of-the art of data mining methodologies. The study was
not SLR, and focused on comprehensive comparison of phases, processes, activities of
data mining methodologies; application aspect was summarized briefly as application
statistics by industries and citations. Three more comparative, non-SLR studies were
undertaken byMarban, Mariscal & Segovia (2009),Mariscal, Marbán & Fernández (2010),
and the most recent and closest one by Martnez-Plumed et al. (2017). They followed
the same pattern with systematization of existing data mining frameworks based on
comparative analysis. There, the purpose and context of consolidation was even more
practical—to support derivation and proposal of the new artifact, that is, novel data
mining methodology. The majority of the given general type surveys in the field are more
than a decade old, and have natural limitations due to being: (1) non-SLR studies, and
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(2) so far restricted to comparing methodologies in terms of phases, activities, and other
elements.

The key common characteristic behind all the given studies is that data mining
methodologies are treated as normative and standardized (‘one-size-fits-all’) processes.
A complementary perspective, not considered in the above studies, is that data mining
methodologies are not normative standardized processes, but instead, they are frameworks
that need to be specialized to different industry domains, organizational contexts, and
business objectives. In the last few years, a number of extensions and adaptations of data
mining methodologies have emerged, which suggest that existing methodologies are not
sufficient to cover the needs of all application domains. In particular, extensions of
data mining methodologies have been proposed in the medical domain (Niaksu, 2015),
educational domain (Tavares, Vieira & Pedro, 2017), the industrial engineering domain
(Huber et al., 2019; Solarte, 2002), and software engineering (Marbán et al., 2007, 2009).
However, little attention has been given to studying how data mining methodologies are
applied and used in industry settings, so far only non-scientific practitioners’ surveys
provide such evidence.

Given this research gap, the central objective of this article is to investigate how data
mining methodologies are applied by researchers and practitioners, both in their generic
(standardized) form and in specialized settings. This is achieved by investigating if
data mining methodologies are applied ‘as-is’ or adapted, and for what purposes such
adaptations are implemented.

Guided by Systematic Literature Review method, initially we identified a corpus of
primary studies covering both peer-reviewed and ‘grey’ literature from 1997 to 2018.
An analysis of these studies led us to a taxonomy of uses of data mining methodologies,
focusing on the distinction between ‘as is’ usage versus various types of methodology
adaptations. By analyzing different types of methodology adaptations, this article identifies
potential gaps in standard data mining methodologies both at the technological and at
the organizational levels.

The rest of the article is organized as follows. The Background section provides an
overview of key concepts of data mining and associated methodologies. Next, Research
Design describes the research methodology. The Findings and Discussion section presents
the study results and their associated interpretation. Finally, threats to validity are
addressed in Threats to Validity while the Conclusion summarizes the findings and outlines
directions for future work.

BACKGROUND
The section introduces main data mining concepts, provides overview of existing data
mining methodologies, and their evolution.

Data mining is defined as a set of rules, processes, algorithms that are designed to
generate actionable insights, extract patterns, and identify relationships from large datasets
(Morabito, 2016). Data mining incorporates automated data extraction, processing, and
modeling by means of a range of methods and techniques. In contrast, data
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analytics refers to techniques used to analyze and acquire intelligence from data
(including ‘big data’) (Gandomi & Haider, 2015) and is positioned as a broader field,
encompassing a wider spectrum of methods that includes both statistical and data mining
(Chen, Chiang & Storey, 2012). A number of algorithms has been developed in statistics,
machine learning, and artificial intelligence domains to support and enable data mining.
While statistical approaches precedes them, they inherently come with limitations, the
most known being rigid data distribution conditions. Machine learning techniques gained
popularity as they impose less restrictions while deriving understandable patterns from
data (Bose & Mahapatra, 2001).

Data mining projects commonly follow a structured process or methodology as
exemplified byMariscal, Marbán & Fernández (2010),Marban, Mariscal & Segovia (2009).
A data mining methodology specifies tasks, inputs, outputs, and provides guidelines
and instructions on how the tasks are to be executed (Mariscal, Marbán & Fernández,
2010). Thus, data mining methodology provides a set of guidelines for executing a set of
tasks to achieve the objectives of a data mining project (Mariscal, Marbán & Fernández,
2010).

The foundations of structured data mining methodologies were first proposed by
Fayyad, Piatetsky-Shapiro & Smyth (1996a, 1996b, 1996c), and were initially related to
Knowledge Discovery in Databases (KDD). KDD presents a conceptual process model of
computational theories and tools that support information extraction (knowledge) with
data (Fayyad, Piatetsky-Shapiro & Smyth, 1996a). In KDD, the overall approach to
knowledge discovery includes data mining as a specific step. As such, KDD, with its nine
main steps (exhibited in Fig. 1), has the advantage of considering data storage and access,
algorithm scaling, interpretation and visualization of results, and human computer
interaction (Fayyad, Piatetsky-Shapiro & Smyth, 1996a, 1996c). Introduction of KDD also
formalized clearer distinction between data mining and data analytics, as for example
formulated in Tsai et al. (2015): “…by the data analytics, we mean the whole KDD process,
while by the data analysis, we mean the part of data analytics that is aimed at finding the
hidden information in the data, such as data mining”.

Figure 1 An overview of the steps composing the KDD process, as presented in Fayyad, Piatetsky-
Shapiro & Smyth (1996a, 1996c). Full-size DOI: 10.7717/peerj-cs.267/fig-1
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The main steps of KDD are as follows:

� Step 1: Learning application domain: In the first step, it is needed to develop an
understanding of the application domain and relevant prior knowledge followed by
identifying the goal of the KDD process from the customer’s viewpoint.

� Step 2: Dataset creation: Second step involves selecting a dataset, focusing on a subset of
variables or data samples on which discovery is to be performed.

� Step 3: Data cleaning and processing: In the third step, basic operations to remove noise
or outliers are performed. Collection of necessary information to model or account for
noise, deciding on strategies for handling missing data fields, and accounting for
data types, schema, and mapping of missing and unknown values are also considered.

� Step 4: Data reduction and projection: Here, the work of finding useful features to
represent the data, depending on the goal of the task, application of transformation
methods to find optimal features set for the data is conducted.

� Step 5: Choosing the function of data mining: In the fifth step, the target outcome
(e.g., summarization, classification, regression, clustering) are defined.

� Step 6: Choosing data mining algorithm: Sixth step concerns selecting method(s) to
search for patterns in the data, deciding which models and parameters are appropriate
and matching a particular data mining method with the overall criteria of the KDD
process.

� Step 7: Data mining: In the seventh step, the work of mining the data that is, searching
for patterns of interest in a particular representational form or a set of such
representations: classification rules or trees, regression, clustering is conducted.

� Step 8: Interpretation: In this step, the redundant and irrelevant patterns are filtered out,
relevant patterns are interpreted and visualized in such way as to make the result
understandable to the users.

� Step 9: Using discovered knowledge: In the last step, the results are incorporated
with the performance system, documented and reported to stakeholders, and used as
basis for decisions.

The KDD process became dominant in industrial and academic domains (Kurgan &
Musilek, 2006; Marban, Mariscal & Segovia, 2009). Also, as timeline-based evolution of
data mining methodologies and process models shows (Fig. 2 below), the original KDD
data mining model served as basis for other methodologies and process models, which
addressed various gaps and deficiencies of original KDD process. These approaches
extended the initial KDD framework, yet, extension degree has varied ranging from
process restructuring to complete change in focus. For example, Brachman & Anand
(1996) and further Gertosio & Dussauchoy (2004) (in a form of case study) introduced
practical adjustments to the process based on iterative nature of process as well as
interactivity. The complete KDD process in their view was enhanced with supplementary
tasks and the focus was changed to user’s point of view (human-centered approach),
highlighting decisions that need to be made by the user in the course of data mining
process. In contrast, Cabena et al. (1997) proposed different number of steps emphasizing
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and detailing data processing and discovery tasks. Similarly, in a series of works Anand &
Büchner (1998), Anand et al. (1998), Buchner et al. (1999) presented additional data
mining process steps by concentrating on adaptation of data mining process to practical
settings. They focused on cross-sales (entire life-cycles of online customer), with further
incorporation of internet data discovery process (web-based mining). Further, Two
Crows data mining process model is consultancy originated framework that has defined
the steps differently, but is still close to original KDD. Finally, SEMMA (Sample, Explore,
Modify, Model and Assess) based on KDD, was developed by SAS institute in 2005
(SAS Institute Inc., 2017). It is defined as a logical organization of the functional toolset of
SAS Enterprise Miner for carrying out the core tasks of data mining. Compared to
KDD, this is vendor-specific process model which limits its application in different
environments. Also, it skips two steps of original KDD process (‘Learning Application
Domain’ and ‘Using of Discovered Knowledge’) which are regarded as essential for success
of data mining project (Mariscal, Marbán & Fernández, 2010). In terms of adoption, new
KDD-based proposals received limited attention across academia and industry (Kurgan &
Musilek, 2006; Marban, Mariscal & Segovia, 2009). Subsequently, most of these
methodologies converged into the CRISP-DM methodology.

Additionally, there have only been two non-KDD based approaches proposed alongside
extensions to KDD. The first one is 5A’s approach presented by De Pisón Ascacbar
(2003) and used by SPSS vendor. The key contribution of this approach has been related
to adding ‘Automate’ step while disadvantage was associated with omitting ‘Data
Understanding’ step. The second approach was 6-Sigma which is industry originated

Figure 2 Evolution of data mining process and methodologies, as presented inMartnez-Plumed et al.
(2017). Full-size DOI: 10.7717/peerj-cs.267/fig-2
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method to improve quality and customer’s satisfaction (Pyzdek & Keller, 2003). It has been
successfully applied to data mining projects in conjunction with DMAIC performance
improvement model (Define, Measure, Analyze, Improve, Control).

In 2000, as response to common issues and needs (Marban, Mariscal & Segovia, 2009),
an industry-driven methodology called Cross-Industry Standard Process for Data Mining
(CRISP-DM) was introduced as an alternative to KDD. It also consolidated original
KDDmodel and its various extensions. While CRISP-DM builds upon KDD, it consists of six
phases that are executed in iterations (Marban, Mariscal & Segovia, 2009). The iterative
executions of CRISP-DM stand as the most distinguishing feature compared to initial
KDD that assumes a sequential execution of its steps. CRISP-DM, much like KDD, aims
at providing practitioners with guidelines to perform data mining on large datasets. However,
CRISP-DM with its six main steps with a total of 24 tasks and outputs, is more refined as
compared to KDD. The main steps of CRIPS-DM, as depicted in Fig. 3 below are as follows:

� Phase 1: Business understanding: The focus of the first step is to gain an understanding
of the project objectives and requirements from a business perspective followed by
converting these into data mining problem definitions. Presentation of a preliminary
plan to achieve the objectives are also included in this first step.

� Phase 2: Data understanding: This step begins with an initial data collection and
proceeds with activities in order to get familiar with the data, identify data quality issues,
discover first insights into the data, and potentially detect and form hypotheses.

� Phase 3: Data preparation: The third step covers activities required to construct the final
dataset from the initial raw data. Data preparation tasks are performed repeatedly.

� Phase 4: Modeling phase: In this step, various modeling techniques are selected and
applied followed by calibrating their parameters. Typically, several techniques are used
for the same data mining problem.

� Phase 5: Evaluation of the model(s): The fifth step begins with the quality perspective
and then, before proceeding to final model deployment, ascertains that the model(s)
achieves the business objectives. At the end of this phase, a decision should be reached
on how to use data mining results.

� Phase 6: Deployment phase: In the final step, the models are deployed to enable end-
customers to use the data as basis for decisions, or support in the business process.
Even if the purpose of the model is to increase knowledge of the data, the knowledge
gained will need to be organized, presented, distributed in a way that the end-user can
use it. Depending on the requirements, the deployment phase can be as simple as
generating a report or as complex as implementing a repeatable data mining process.

The development of CRISP-DM was led by industry consortium. It is designed to be
domain-agnostic (Mariscal, Marbán & Fernández, 2010) and as such, is now widely used
by industry and research communities (Marban, Mariscal & Segovia, 2009). These
distinctive characteristics have made CRISP-DM to be considered as ‘de-facto’ standard of
data mining methodology and as a reference framework to which other methodologies are
benchmarked (Mariscal, Marbán & Fernández, 2010).
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Similarly to KDD, a number of refinements and extensions of the CRISP-DM
methodology have been proposed with the two main directions—extensions of the process
model itself and adaptations, merger with the process models and methodologies in other
domains. Extensions direction of process models could be exemplified by Cios &
Kurgan (2005) who have proposed integrated Data Mining & Knowledge Discovery
(DMKD) process model. It contains several explicit feedback mechanisms, modification of
the last step to incorporate discovered knowledge and insights application as well as
relies on technologies for results deployment. In the same vein, Moyle & Jorge (2001),
Blockeel & Moyle (2002) proposed Rapid Collaborative Data Mining System (RAMSYS)
framework—this is both data mining methodology and system for remote collaborative
data mining projects. The RAMSYS attempted to achieve the combination of a problem
solving methodology, knowledge sharing, and ease of communication. It intended to
allow the collaborative work of remotely placed data miners in a disciplined manner as
regards information flow while allowing the free flow of ideas for problem solving
(Moyle & Jorge, 2001). CRISP-DM modifications and integrations with other specific
domains were proposed in Industrial Engineering (Data Mining for Industrial Engineering
by Solarte (2002)), and Software Engineering by Marbán et al. (2007, 2009). Both
approaches enhanced CRISP-DM and contributed with additional phases, activities and
tasks typical for engineering processes, addressing on-going support (Solarte, 2002), as
well as project management, organizational and quality assurance tasks (Marbán et al.,
2009).

Figure 3 CRISP-DM phases and key outputs (adapted from Chapman et al. (2000)).
Full-size DOI: 10.7717/peerj-cs.267/fig-3
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Finally, limited number of attempts to create independent or semi-dependent data
mining frameworks was undertaken after CRISP-DM creation. These efforts were driven
by industry players and comprised KDD Roadmap by Debuse et al. (2001) for proprietary
predictive toolkit (Lanner Group), and recent effort by IBM with Analytics Solutions
Unified Method for Data Mining (ASUM-DM) in 2015 (IBM Corporation, 2016: https://
developer.ibm.com/technologies/artificial-intelligence/articles/architectural-thinking-in-
the-wild-west-of-data-science/). Both frameworks contributed with additional tasks, for
example, resourcing in KDD Roadmap, or hybrid approach assumed in ASUM, for
example, combination of agile and traditional implementation principles.

The Table 1 above summarizes reviewed data mining process models and
methodologies by their origin, basis and key concepts.

RESEARCH DESIGN
The main research objective of this article is to study how data mining methodologies are
applied by researchers and practitioners. To this end, we use systematic literature review
(SLR) as scientific method for two reasons. Firstly, systematic review is based on
trustworthy, rigorous, and auditable methodology. Secondly, SLR supports structured
synthesis of existing evidence, identification of research gaps, and provides framework to
position new research activities (Kitchenham, Budgen & Brereton, 2015). For our SLR, we
followed the guidelines proposed by Kitchenham, Budgen & Brereton (2015). All SLR
details have been documented in the separate, peer-reviewed SLR protocol (available at
https://figshare.com/articles/Systematic-Literature-Review-Protocol/10315961).

Table 1 Key aspects of existing data mining process models and methodologies.

Name Origin Basis Key concept Year

Human-Centered Academy KDD Iterative process and interactivity (user’s point of view and needed
decisions)

1996, 2004

Cabena et al. Academy KDD Focus on data processing and discovery tasks 1997

Anand and Buchner Academy KDD Supplementary steps and integration of web-mining 1998, 1999

Two Crows Industry KDD Modified definitions of steps 1998

SEMMA Industry KDD Tool-specific (SAS Institute), elimination of some steps 2005

5 A’s Industry Independent Supplementary steps 2003

6 Sigmas Industry Independent Six Sigma quality improvement paradigm in conjunction with
DMAIC performance improvement model

2003

CRISP-DM Joint industry and academy KDD Iterative execution of steps, significant refinements to tasks and
outputs

2000

Cios et al. Academy Crisp-DM Integration of data mining and knowledge discovery, feedback
mechanisms, usage of received insights supported by technologies

2005

RAMSYS Academy Crisp-DM Integration of collaborative work aspects 2001–2002

DMIE Academy Crisp-DM Integration and adaptation to Industrial Engineering domain 2001

Marban Academy Crisp-DM Integration and adaptation to Software Engineering domain 2007

KDD roadmap Joint industry and academy Independent Tool-specific, resourcing task 2001

ASUM Industry Crisp-DM Tool-specific, combination of traditional Crisp-DM and agile
implementation approach

2015
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Research questions
As suggested by Kitchenham, Budgen & Brereton (2015), we have formulated research
questions and motivate them as follows. In the preliminary phase of research we have
discovered very limited number of studies investigating data mining methodologies
application practices as such. Further, we have discovered number of surveys
conducted in domain-specific settings, and very few general purpose surveys, but none of
them considered application practices either. As contrasting trend, recent emergence
of limited number of adaptation studies have clearly pinpointed the research gap
existing in the area of application practices. Given this research gap, in-depth
investigation of this phenomenon led us to ask: “How data mining methodologies are
applied (‘as-is’ vs adapted) (RQ1)?” Further, as we intended to investigate in depth
universe of adaptations scenarios, this naturally led us to RQ2: “How have existing data
mining methodologies been adapted?” Finally, if adaptions are made, we wish to explore
what the associated reasons and purposes are, which in turn led us to RQ3: “For what
purposes are data mining methodologies adapted?”

Thus, for this review, there are three research questions defined:

� Research Question 1: How data mining methodologies are applied (‘as-is’ versus
adapted)? This question aims to identify data mining methodologies application and
usage patterns and trends.

� Research Question 2: How have existing data mining methodologies been adapted?
This questions aims to identify and classify data mining methodologies adaptation
patterns and scenarios.

� Research Question 3: For what purposes have existing data mining methodologies
been adapted? This question aims to identify, explain, classify and produce insights on
what are the reasons and what benefits are achieved by adaptations of existing data
mining methodologies. Specifically, what gaps do these adaptations seek to fill and what
have been the benefits of these adaptations. Such systematic evidence and insights will be
valuable input to potentially new, refined data mining methodology. Insights will be of
interest to practitioners and researchers.

Data collection strategy
Our data collection and search strategy followed the guidelines proposed by
Kitchenham, Budgen & Brereton (2015). It defined the scope of the search, selection of
literature and electronic databases, search terms and strings as well as screening
procedures.

Primary search
The primary search aimed to identify an initial set of papers. To this end, the search
strings were derived from the research objective and research questions. The term ‘data
mining’ was the key term, but we also included ‘data analytics’ to be consistent with
observed research practices. The terms ‘methodology’ and ‘framework’ were also included.
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Thus, the following search strings were developed and validated in accordance with the
guidelines suggested by Kitchenham, Budgen & Brereton (2015):

(‘data mining methodology’) OR (‘data mining framework’) OR (‘data analytics
methodology’) OR (‘data analytics framework’)

The search strings were applied to the indexed scientific databases Scopus, Web of
Science (for ‘peer-reviewed’, academic literature) and to the non-indexed Google Scholar
(for non-peer-reviewed, so-called ‘grey’ literature). The decision to cover ‘grey’ literature
in this research was motivated as follows. As proposed in number of information
systems and software engineering domain publications (Garousi, Felderer & Mäntylä,
2019; Neto et al., 2019), SLR as stand-alone method may not provide sufficient insight
into ‘state of practice’. It was also identified (Garousi, Felderer & Mäntylä, 2016) that ‘grey’
literature can give substantial benefits in certain areas of software engineering, in
particular, when the topic of research is related to industrial and practical settings.
Taking into consideration the research objectives, which is investigating data mining
methodologies application practices, we have opted for inclusion of elements of Multivocal
Literature Review (MLR)1 in our study. Also, Kitchenham, Budgen & Brereton (2015)
recommends including ‘grey’ literature to minimize publication bias as positive results and
research outcomes are more likely to be published than negative ones. Following
MLR practices, we also designed inclusion criteria for types of ‘grey’ literature reported
below.

The selection of databases is motivated as follows. In case of peer-reviewed literature
sources we concentrated to avoid potential omission bias. The latter is discussed in IS
research (Levy & Ellis, 2006) in case research is concentrated in limited disciplinary data
sources. Thus, broad selection of data sources including multidisciplinary-oriented
(Scopus, Web of Science, Wiley Online Library) and domain-oriented (ACM Digital
Library, IEEE Xplorer Digital Library) scientific electronic databases was evaluated.
Multidisciplinary databases have been selected due to wider domain coverage and it was
validated and confirmed that they do include publications originating from domain-
oriented databases, such as ACM and IEEE. From multi-disciplinary databases as such,
Scopus was selected due to widest possible coverage (it is worlds largest database,
covering app. 80% of all international peer-reviewed journals) while Web of Science
was selected due to its longer temporal range. Thus, both databases complement each
other. The selected non-indexed database source for ‘grey’ literature is Google Scholar, as it
is comprehensive source of both academic and ‘grey’ literature publications and referred as
such extensively (Garousi, Felderer & Mäntylä, 2019; Neto et al., 2019).

Further, Garousi, Felderer & Mäntylä (2019) presented three-tier categorization
framework for types of ‘grey literature’. In our study we restricted ourselves to the 1st tier
‘grey’ literature publications of the limited number of ‘grey’ literature producers. In
particular, from the list of producers (Neto et al., 2019) we have adopted and focused on
government departments and agencies, non-profit economic, trade organizations (‘think-
tanks’) and professional associations, academic and research institutions, businesses and
corporations (consultancy companies and established private companies). The 1st tier ‘grey’
literature selected items include: (1) government, academic, and private sector consultancy

1 Multivocal Literature Review (MLR) (as
in Garousi, Felderer & Mäntylä (2019)),
is a form of a SLR which includes the
gray literature (e.g., blog posts, videos
and white papers) in addition to the
published (formal) literature (e.g., jour-
nal and conference papers).
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reports2, (2) theses (not lower than Master level) and PhD Dissertations, (3) research
reports, (4) working papers, (5) conference proceedings, preprints. With inclusion of the 1st
tier ‘grey’ literature criteria we mitigate quality assessment challenge especially relevant and
reported for it (Garousi, Felderer & Mäntylä, 2019; Neto et al., 2019).

Scope and domains inclusion

As recommended by Kitchenham, Budgen & Brereton (2015) it is necessary to initially
define research scope. To clarify the scope, we defined what is not included and is out of
scope of this research. The following aspects are not included in the scope of our study:

1. Context of technology and infrastructure for data mining/data analytics tasks and
projects.

2. Granular methods application in data mining process itself or their application for data
mining tasks, for example, constructing business queries or applying regression or
neural networks modeling techniques to solve classification problems. Studies with
granular methods are included in primary texts corpus as long as method application is
part of overall methodological approach.

3. Technological aspects in data mining for example, data engineering, dataflows and
workflows.

4. Traditional statistical methods not associated with data mining directly including
statistical control methods.

Similarly to Budgen et al. (2006) and Levy & Ellis (2006), initial piloting revealed that
search engines retrieved literature available for all major scientific domains including ones
outside authors’ area of expertise (e.g., medicine). Even though such studies could be
retrieved, it would be impossible for us to analyze and correctly interpret literature
published outside the possessed area of expertise. The adjustments toward search strategy
were undertaken by retaining domains closely associated with Information Systems,
Software Engineering research. Thus, for Scopus database the final set of inclusive
domains was limited to nine and included Computer Science, Engineering, Mathematics,
Business, Management and Accounting, Decision Science, Economics, Econometrics and
Finance, and Multidisciplinary as well as Undefined studies. Excluded domains covered
11.5% or 106 out of 925 publications; it was confirmed in validation process that they
primarily focused on specific case studies in fundamental sciences and medicine3.
The included domains from Scopus database were mapped to Web of Science to ensure
consistent approach across databases and the correctness of mapping was validated.

Screening criteria and procedures
Based on the SLR practices (as in Kitchenham, Budgen & Brereton (2015), Brereton et al.
(2007)) and defined SLR scope, we designed multi-step screening procedures (quality and
relevancy) with associated set of Screening Criteria and Scoring System. The purpose
of relevancy screening is to find relevant primary studies in an unbiased way
(Vanwersch et al., 2011). Quality screening, on the other hand, aims to assess primary
relevant studies in terms of quality in unbiased way.

2 Including white papers, market reports,
industry overviews and similar.

3 Excluded domains were Medicine, Bio-
chemistry, Genetics and Molecular Biol-
ogy, Environmental Science, Earth and
Planetary Science, Physics and Astron-
omy, Energy and Material Science,
Agricultural and Biological Science,
Chemistry and Chemical Engineering,
Pharmacology, Toxicology and Pharma-
ceuticals, Arts and Humanities, Neu-
roscience, Immunology and
Microbiology, Health Professions and
Nursing.
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Screening Criteria consisted of two subsets—Exclusion Criteria applied for initial
filtering and Relevance Criteria, also known as Inclusion Criteria.

Exclusion Criteria were initial threshold quality controls aiming at eliminating studies
with limited or no scientific contribution. The exclusion criteria also address issues of
understandability, accessability and availability. The Exclusion Criteria were as follows:

1. Quality 1: The publication item is not in English (understandability).

2. Quality 2: Publication item duplicates which can occur when:

� either the same document retrieved from two or all three databases.

� or different versions of the same publication are retrieved (i.e., the same study
published in different sources)—based on best practices, decision rule is that the most
recent paper is retained as well as the one with the highest score (Kofod-Petersen,
2014).

� if a publication is published both as conference proceeding and as journal article with
the same name and same authors or as an extended version of conference paper, the
latter is selected.

3. Quality 3: Length of the publication is less than 6 pages—short papers do not have the
space to expand and discuss presented ideas in sufficient depth to examine for us.

4. Quality 4: The paper is not accessible in full length online through the university
subscription of databases and via Google Scholar—not full availability prevents us from
assessing and analyzing the text.

The initially retrieved list of papers was filtered based on Exclusion Criteria. Only papers
that passed all criteria were retained in the final studies corpus. Mapping of criteria
towards screening steps is exhibited in Fig. 4.

Relevance Criteria were designed to identify relevant publications and are presented in
Table 2 below while mapping to respective process steps is presented in Fig. 4. These
criteria were applied iteratively.

As a final SLR step, the full texts quality assessment was performed with constructed
Scoring Metrics (in line with Kitchenham & Charters (2007)). It is presented in the Table 3
below.

Data extraction and screening process
The conducted data extraction and screening process is presented in Fig. 4. In Step 1 initial
publications list were retrieved from pre-defined databases—Scopus, Web of Science,
Google Scholar. The lists were merged and duplicates eliminated in Step 2. Afterwards,
texts being less than 6 pages were excluded (Step 3). Steps 1–3 were guided by Exclusion
Criteria. In the next stage (Step 4), publications were screened by Title based on pre-
defined Relevance Criteria. The ones which passed were evaluated by their availability
(Step 5). As long as study was available, it was evaluated again by the same pre-defined
Relevance Criteria applied to Abstract, Conclusion and if necessary Introduction (Step 6).
The ones which passed this threshold formed primary publications corpus extracted from
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databases in full. These primary texts were evaluated again based on full text (Step 7)
applying Relevance Criteria first and then Scoring Metrics.

Results and quantitative analysis
In Step 1, 1,715 publications were extracted from relevant databases with the following
composition—Scopus (819), Web of Science (489), Google Scholar (407). In terms of
scientific publication domains, Computer Science (42.4%), Engineering (20.6%),
Mathematics (11.1%) accounted for app. 74% of Scopus originated texts. The same applies
to Web of Science harvest. Exclusion Criteria application produced the following results.

Figure 4 Relevance and quality screening steps with criteria.
Full-size DOI: 10.7717/peerj-cs.267/fig-4

Table 2 Relevance criteria mapping to screening process steps.

Relevance
criteria

Criteria definition Criteria justification

Relevance 1 Is the study about data mining or data analytics approach
and is within designated list of domains?

Exclude studies conducted outside the designated domain list. Exclude
studies not directly describing and/or discussing data mining and data
analytics

Relevance 2 Is the study introducing/describing data mining or data
analytics methodology/framework or modifying existing
approaches?

Exclude texts considering only specific, granular data mining and data
analytics techniques, methods or traditional statistical methods.
Exclude publications focusing on specific, granular data mining and
data analytics process/sub-process aspects. Exclude texts where
description and discussion of data mining methodologies or
frameworks is manifestly missing
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In Step 2, after eliminating duplicates, 1,186 texts were passed for minimum length
evaluation, and 767 reached assessment by Relevancy Criteria.

As mentioned Relevance Criteria were applied iteratively (Step 4–6) and in conjunction
with availability assessment. As a result, only 298 texts were retained for full evaluation
with 241 originating from scientific databases while 57 were ‘grey’. These studies
formed primary texts corpus which was extracted, read in full and evaluated by Relevance
Criteria combined with Scoring Metrics. The decision rule was set as follows. Studies that
scored “1” or “0” were rejected, while texts with “3” and “2” evaluation were admitted
as final primary studies corpus. To this end, as an outcome of SLR-based, broad, cross-
domain publications collection and screening we identified 207 relevant publications from
peer-reviewed (156 texts) and ‘grey’ literature (51 texts). Figure 5 below exhibits yearly
published research numbers with the breakdown by ‘peer-reviewed’ and ‘grey’ literature
starting from 1997.

In terms of composition, ‘peer-reviewed’ studies corpus is well-balanced with 72 journal
articles and 82 conference papers while book chapters account for 4 instances only. In
contrast, in ‘grey’ literature subset, articles in moderated and non-peer reviewed journals
are dominant (n = 34) compared to overall number of conference papers (n = 13), followed
by small number of technical reports and pre-prints (n = 4).

Temporal analysis of texts corpus (as per Fig. 5 below) resulted in two observations.
Firstly, we note that stable and significant research interest (in terms of numbers) on data
mining methodologies application has started around a decade ago—in 2007. Research
efforts made prior to 2007 were relatively limited with number of publications below
10. Secondly, we note that research on data mining methodologies has grown substantially
since 2007, an observation supported by the 3-year and 10-year constructed mean
trendlines. In particular, the number of publications have roughly tripled over past decade
hitting all time high with 24 texts released in 2017.

Further, there are also two distinct spike sub-periods in the years 2007–2009 and
2014–2017 followed by stable pattern with overall higher number of released
publications on annual basis. This observation is in line with the trend of increased
penetration of methodologies, tools, cross-industry applications and academic research of
data mining.

Table 3 Scoring metrics.

Score Criteria definition

3 Data mining methodology or framework is presented in full. All steps described and explained, tests performed, results compared and
evaluated. There is clear proposal on usage, application, deployment of solution in organization’s business process(es) and IT/IS system,
and/or prototype or full solution implementation is discussed. Success factors described and presented

2 Data mining methodology or framework is presented, some process steps are missing, but they do not impact the holistic view and
understanding of the performed work. Data mining process is clearly presented and described, tests performed, results compared and
evaluated. There is proposal on usage, application, deployment of solution in organization’s business process(es) and IT/IS system(s)

1 Data mining methodology or framework is not presented in full, some key phases and process steps are missing. Publication focuses on one or
some aspects (e.g., method, technique)

0 Data mining methodology or framework not presented as holistic approach, but on fragmented basis, study limited to some aspects
(e.g., method or technique discussion, etc.)
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FINDINGS AND DISCUSSION
In this section, we address the research questions of the paper. Initially, as part of RQ1,
we present overview of data mining methodologies ‘as-is’ and adaptation trends. In
addressing RQ2, we further classify the adaptations identified. Then, as part of RQ3
subsection, each category identified under RQ2 is analyzed with particular focus on the
goals of adaptations.

RQ1: How dataminingmethodologies are applied (‘as-is’ vs. adapted)?
The first research question examines the extent to which data mining methodologies are
used ‘as-is’ versus adapted. Our review based on 207 publications identified two distinct
paradigms on how data mining methodologies are applied. The first is ‘as-is’ where
the data mining methodologies are applied as stipulated. The second is with ‘adaptations’;
that is, methodologies are modified by introducing various changes to the standard process
model when applied.

We have aggregated research by decades to differentiate application pattern between
two time periods 1997–2007 with limited vs 2008–2018 with more intensive data mining
application. The given cut has not only been guided by extracted publications corpus but
also by earlier surveys. In particular, during the pre-2007 research, there where ten
new methodologies proposed, but since then, only two new methodologies have been

Figure 5 SLR derived relevant texts corpus—data mining methodologies peer-reviewed research and
‘grey’ for period 1997–2018 (no. of publications). Full-size DOI: 10.7717/peerj-cs.267/fig-5
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proposed. Thus, there is a distinct trend observed over the last decade of large number of
extensions and adaptations proposed vs entirely new methodologies.

We note that during the first decade of our time scope (1997–2007), the ratio of data
mining methodologies applied ‘as-is’was 40% (as presented in Fig. 6A). However, the same
ratio for the following decade is 32% (Fig. 6B). Thus, in terms of relative shares we note a
clear decrease in using data mining methodologies ‘as-is’ in favor of adapting them to cater
to specific needs.The trend is even more pronounced when comparing numbers—
adaptations more than tripled (from 30 to 106) while ‘as-is’ scenario has increased
modestly (from 20 to 51). Given this finding, we continue with analyzing how data mining
methodologies have been adapted under RQ2.

RQ2: How have existing data mining methodologies been adapted?
We identified that data mining methodologies have been adapted to cater to specific needs.
In order to categorize adaptations scenarios, we applied a two-level dichotomy, specifically,
by applying the following decision tree:

1. Level 1 Decision: Has the methodology been combined with another methodology? If
yes, the resulting methodology was classified in the ‘integration’ category. Otherwise, we
posed the next question.

2. Level 2 Decision: Are any new elements (phases, tasks, deliverables) added to the
methodology? If yes, we designate the resulting methodology as an ‘extension’ of the original
one. Otherwise, we classify the resulting methodology as a modification of the original one.

Thus, when adapted three distinct types of adaptation scenarios can be distinguished:

� Scenario ‘Modification’: introduces specialized sub-tasks and deliverables in order to
address specific use cases or business problems. Modifications typically concentrate

Figure 6 Applications of data mining methodologies: (A) breakdown by ‘as-is’ vs. adaptions for
1997–2007 period; (B) breakdown by ‘as-is’ vs. adaptions for 2008–2018 period.

Full-size DOI: 10.7717/peerj-cs.267/fig-6
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on granular adjustments to the methodology at the level of sub-phases, tasks or
deliverables within the existing reference frameworks (e.g., CRISP-DM or KDD) stages.
For example, Chernov et al. (2014), in the study of mobile network domain, proposed
automated decision-making enhancement in the deployment phase. In addition,
the evaluation phase was modified by using both conventional and own-developed
performance metrics. Further, in a study performed within the financial services
domain, Yang et al. (2016) presents feature transformation and feature selection as
sub-phases, thereby enhancing the data mining modeling stage.

� Scenario ‘Extension’: primarily proposes significant extensions to reference data mining
methodologies. Such extensions result in either integrated data mining solutions,
data mining frameworks serving as a component or tool for automated IS systems, or
their transformations to fit specialized environments. The main purposes of extensions
are to integrate fully-scaled data mining solutions into IS/IT systems and business
processes and provide broader context with useful architectures, algorithms, etc.
Adaptations, where extensions have been made, elicit and explicitly present various
artifacts in the form of system and model architectures, process views, workflows, and
implementation aspects. A number of soft goals are also achieved, providing holistic
perspective on data mining process, and contextualizing with organizational needs.
Also, there are extensions in this scenario where data mining process methodologies are
substantially changed and extended in all key phases to enable execution of data mining
life-cycle with the new (Big) Data technologies, tools and in new prototyping and
deployment environments (e.g., Hadoop platforms or real-time customer interfaces).
For example, Kisilevich, Keim & Rokach (2013) presented extensions to traditional
CRISP-DM data mining outcomes with fully fledged Decision Support System (DSS) for
hotel brokerage business. Authors (Kisilevich, Keim & Rokach, 2013) have introduced
spatial/non-spatial data management (extending data preparation), analytical and
spatial modeling capabilities (extending modeling phase), provided spatial display
and reporting capabilities (enhancing deployment phase). In the same work domain
knowledge was introduced in all phases of data mining process, and usability and ease of
use were also addressed.

� Scenario ‘Integration’: combines reference methodology, for example, CRISP-DM
with: (1) data mining methodologies originated from other domains (e.g., Software
engineering development methodologies), (2) organizational frameworks (Balanced
Scorecard, Analytics Canvass, etc.), or (3) adjustments to accommodate Big Data
technologies and tools. Also, adaptations in the form of ‘Integration’ typically introduce
various types of ontologies and ontology-based tools, domain knowledge, software
engineering, and BI-driven framework elements. Fundamental data mining process
adjustments to new types of data, IS architectures (e.g., real time data, multi-layer IS) are
also presented. Key gaps addressed with such adjustments are prescriptive nature and
low degree of formalization in CRISP-DM, obsolete nature of CRISP-DM with respect
to tools, and lack of CRISP-DM integration with other organizational frameworks. For
example, Brisson & Collard (2008) developed KEOPS data mining methodology
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(CRIPS-DM based) centered on domain knowledge integration. Ontology-driven
information system has been proposed with integration and enhancements to all steps of
data mining process. Further, an integrated expert knowledge used in all data mining
phases was proved to produce value in data mining process.

To examine how the application scenario of each data mining methodology usage has
developed over time, we mapped peer-reviewed texts and ‘grey’ literature to respective
adaptation scenarios, aggregated by decades (as presented in the Fig. 7 for peer-reviewed
and Fig. 8 for ‘grey’).

For peer-reviewed research, such temporal analysis resulted in three observations.
Firstly, research efforts in each adaptation scenario has been growing and number of
publication more than quadrupled (128 vs. 28). Secondly, as noted above relative
proportion of ‘as-is’ studies is diluted (from 39% to 33%) and primarily replaced with
‘Extension’ paradigm (from 25% to 30%). In contrast, in relative terms ‘Modification’ and
‘Integration’ paradigms gains are modest. Further, this finding is reinforced with other
observation—most notable gaps in terms of modest number of publications remain in
‘Integration’ category where excluding 2008–2009 spike, research efforts are limited and
number of texts is just 13. This is in stark contrast with prolific research in ‘Extension
category’ though concentrated in the recent years. We can hypothesize that existing
reference methodologies do not accommodate and support increasing complexity of data
mining projects and IS/IT infrastructure, as well as certain domains specifics and as such
need to be adapted.

In ‘grey’ literature, in contrast to peer-reviewed research, growth in number of
publications is less profound—29 vs. 22 publications or 32% comparing across two decade
(as per Fig. 8). The growth is solely driven by ‘Integration’ scenarios application (13 vs.
4 publications) while both ‘as-is’ and other adaptations scenarios are stagnating or in
decline.

RQ3: For what purposes have existing data mining methodologies
been adapted?
We address the third research question by analyzing what gaps the data mining
methodology adaptations seek to fill and the benefits of such adaptations. We identified
three adaptation scenarios, namely ‘Modification’, ‘Extension’, and ‘Integration’. Here, we
analyze each of them.

Modification
Modifications of data mining methodologies are present in 30 peer-reviewed and 4 ‘grey’
literature studies. The analysis shows that modifications overwhelmingly consist of specific
case studies. However, the major differentiating point compared to ‘as-is’ case studies is
clear presence of specific adjustments towards standard data mining process
methodologies. Yet, the proposed modifications and their purposes do not go beyond
traditional data mining methodologies phases. They are granular, specialized and executed
on tasks, sub-tasks, and at deliverables level. With modifications, authors describe
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potential business applications and deployment scenarios at a conceptual level, but
typically do not report or present real implementations in the IS/IT systems and business
processes.

Further, this research subcategory can be best classified based on domains where
case studies were performed and data mining methodologies modification scenarios
executed. We have identified four distinct domain-driven applications presented in the
Fig. 9.

Figure 7 Data Mining methodologies application research—primary ‘peer-reviewed’ texts
classification by types of scenarios aggregated by decades (with numbers and relative
proportions). Full-size DOI: 10.7717/peerj-cs.267/fig-7

Figure 8 Data Mining methodologies application research—primary ‘grey’ texts classification by
types of scenarios aggregated by decades (with numbers and relative proportions).

Full-size DOI: 10.7717/peerj-cs.267/fig-8
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IT, IS domain

The largest number of publications (14 or app. 40%), was performed on IT, IS security,
software development, specific data mining and processing topics. Authors address
intrusion detection problem in Hossain, Bridges & Vaughn (2003), Fan, Ye & Chen (2016),
Lee, Stolfo & Mok (1999), specialized algorithms for variety of data types processing in
Yang & Shi (2010), Chen et al. (2001), Yi, Teng & Xu (2016), Pouyanfar & Chen (2016),
effective and efficient computer and mobile networks management in Guan & Fu (2010),
Ertek, Chi & Zhang (2017), Zaki & Sobh (2005), Chernov, Petrov & Ristaniemi (2015),
Chernov et al. (2014).

Manufacturing and engineering
The next most popular research area is manufacturing/engineering with 10 case studies.
The central topic here is high-technology manufacturing, for example, semi-conductors
associated—study of Chien, Diaz & Lan (2014), and various complex prognostics
case studies in rail, aerospace domains (Létourneau et al., 2005; Zaluski et al., 2011)
concentrated on failure predictions. These are complemented by studies on equipment
fault and failure predictions and maintenance (Kumar, Shankar & Thakur, 2018; Kang
et al., 2017; Wang, 2017) as well as monitoring system (García et al., 2017).

Sales and services, incl. financial industry
The third category is presented by seven business application papers concerning customer
service, targeting and advertising (Karimi-Majd & Mahootchi, 2015; Reutterer et al., 2017;
Wang, 2017), financial services credit risk assessments (Smith, Willis & Brooks, 2000),
supply chain management (Nohuddin et al., 2018), and property management (Yu, Fung &
Haghighat, 2013), and similar.

Figure 9 ‘Modification’ paradigm application studies for period 1997–2018—mapping to domains.
Full-size DOI: 10.7717/peerj-cs.267/fig-9
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As a consequence of specialization, these studies concentrate on developing ‘state-of-the
art’ solution to the respective domain-specific problem.

Extension
‘Extension’ scenario was identified in 46 peer-reviewed and 12 ‘grey’ publications. We
noted that ‘Extension’ to existing data mining methodologies were executed with four
major purposes:

1. Purpose 1: To implement fully scaled, integrated data mining solution and regular,
repeatable knowledge discovery process—address model, algorithm deployment,
implementation design (including architecture, workflows and corresponding IS
integration). Also, complementary goal is to tackle changes to business process to
incorporate data mining into organization activities.

2. Purpose 2:To implement complex, specifically designed systems and integrated business
applications with data mining model/solution as component or tool. Typically, this
adaptation is also oriented towards Big Data specifics, and is complemented by proposed
artifacts such as Big Data architectures, system models, workflows, and data flows.

3. Purpose 3: To implement data mining as part of integrated/combined specialized
infrastructure, data environments and types (e.g., IoT, cloud, mobile networks).

4. Purpose 4: To incorporate context-awareness aspects.

The specific list of studies mapped to each of the given purposes presented in the
Appendix (Table A1). Main purposes of adaptations, associated gaps and/or benefits along
with observations and artifacts are documented in the Fig. 10 below.

In ‘Extension’ category, studies executed with the Purpose 1 propose fully scaled,
integrated data mining solutions of specific data mining models, associated frameworks
and processes. The distinctive trait of this research subclass is that it ensures repeatability
and reproducibility of delivered data mining solution in different organizational and
industry settings. Both the results of data mining use case as well as deployment and
integration into IS/IT systems and associated business process(es) are presented explicitly.
Thus, ‘Extension’ subclass is geared towards specific solution design, tackling concrete
business or industrial setting problem or addressing specific research gaps thus resembling
comprehensive case study.

This direction can be well exemplified by expert finder system in research social
network services proposed by Sun et al. (2015), data mining solution for functional test
content optimization by Wang (2015) and time-series mining framework to conduct
estimation of unobservable time-series byHu et al. (2010). Similarly, Du et al. (2017) tackle
online log anomalies detection, automated association rule mining is addressed by
Çinicioğlu et al. (2011), software effort estimation by Deng, Purvis & Purvis (2011),
network patterns visual discovery by Simoff & Galloway (2008). Number of studies address
solutions in IS security (Shin & Jeong, 2005), manufacturing (Güder et al., 2014; Chee,
Baharudin & Karkonasasi, 2016), materials engineering domains (Doreswamy, 2008), and
business domains (Xu & Qiu, 2008; Ding & Daniel, 2007).
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In contrast, ‘Extension’ studies executed for the Purpose 2 concentrate on design of
complex, multi-component information systems and architectures. These are holistic,
complex systems and integrated business applications with data mining framework serving
as component or tool. Moreover, data mining methodology in these studies is extended
with systems integration phases.

For example, Mobasher (2007) presents data mining application in Web personalization
system and associated process; here, data mining cycle is extended in all phases with utmost
goal of leveraging multiple data sources and using discovered models and corresponding
algorithms in an automatic personalization system. Authors comprehensively address data
processing, algorithm, design adjustments and respective integration into automated
system. Similarly, Haruechaiyasak, Shyu & Chen (2004) tackle improvement of Webpage
recommender system by presenting extended data miningmethodology including design and
implementation of data mining model. Holistic view on web-mining with support of all
data sources, data warehousing and data mining techniques integration, as well as
multiple problem-oriented analytical outcomes with rich business application scenarios
(personalization, adaptation, profiling, and recommendations) in e-commerce domain was
proposed and discussed by Büchner & Mulvenna (1998). Further, Singh et al. (2014) tackled
scalable implementation of Network Threat Intrusion Detection System. In this study,
data mining methodology and resulting model are extended, scaled and deployed as module
of quasi-real-time system for capturing Peer-to-Peer Botnet attacks. Similar complex solution
was presented in a series of publications by Lee et al. (2000, 2001) who designed real-time
data mining-based Intrusion Detection System (IDS). These works are complemented by
comprehensive study of Barbará et al. (2001) who constructed experimental testbed for
intrusion detection with data mining methods. Detection model combining data fusion
and mining and respective components for Botnets identification was developed by
Kiayias et al. (2009) too. Similar approach is presented in Alazab et al. (2011) who proposed

Figure 10 ‘Extension’ scenario adaptations goals, benefits, artifacts and number of publications for
period 1997–2018. Full-size DOI: 10.7717/peerj-cs.267/fig-10
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and implemented zero-day malware detection system with associated machine-learning
based framework. Finally, Ahmed, Rafique & Abulaish (2011) presented multi-layer
framework for fuzzy attack in 3G cellular IP networks.

A number of authors have considered data mining methodologies in the context of
Decision Support Systems and other systems that generate information for decision-
making, across a variety of domains. For example, Kisilevich, Keim & Rokach (2013)
executed significant extension of data mining methodology by designing and presenting
integrated Decision Support System (DSS) with six components acting as supporting
tool for hotel brokerage business to increase deal profitability. Similar approach is
undertaken by Capozzoli et al. (2017) focusing on improving energy management of
properties by provision of occupancy pattern information and reconfiguration framework.
Kabir (2016) presented data mining information service providing improved sales
forecasting that supported solution of under/over-stocking problem while Lau, Zhang &
Xu (2018) addressed sales forecasting with sentiment analysis on Big Data. Kamrani,
Rong & Gonzalez (2001) proposed GA-based Intelligent Diagnosis system for fault
diagnostics in manufacturing domain. The latter was tackled further in Shahbaz et al.
(2010) with complex, integrated data mining system for diagnosing and solving
manufacturing problems in real time.

Lenz, Wuest & Westkämper (2018) propose a framework for capturing data analytics
objectives and creating holistic, cross-departmental data mining systems in the
manufacturing domain. This work is representative of a cohort of studies that aim at
extending data mining methodologies in order to support the design and implementation of
enterprise-wide data mining systems. In this same research cohort, we classify Luna,
Castro & Romero (2017), which presents a data mining toolset integrated into the Moodle
learning management system, with the aim of supporting university-wide learning analytics.

One study addresses multi-agent based data mining concept. Khan, Mohamudally &
Babajee (2013) have developed unified theoretical framework for data mining by
formulating a unified data mining theory. The framework is tested by means of agent
programing proposing integration into multi-agent system which is useful due to
scalability, robustness and simplicity.

The subcategory of ‘Extension’ research executed with Purpose 3 is devoted to data
mining methodologies and solutions in specialized IT/IS, data and process environments
which emerged recently as consequence of Big Data associated technologies and tools
development. Exemplary studies include IoT associated environment research, for
example, Smart City application in IoT presented by Strohbach et al. (2015). In the same
domain, Bashir & Gill (2016) addressed IoT-enabled smart buildings with the additional
challenge of large amount of high-speed real time data and requirements of real-time
analytics. Authors proposed integrated IoT Big Data Analytics framework. This research is
complemented by interdisciplinary study of Zhong et al. (2017) where IoT and wireless
technologies are used to create RFID-enabled environment producing analysis of KPIs to
improve logistics.

Significant number of studies addresses various mobile environments sometimes
complemented by cloud-based environments or cloud-based environments as stand-alone.
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Gomes, Phua & Krishnaswamy (2013) addressed mobile data mining with execution
on mobile device itself; the framework proposes innovative approach addressing extensions
of all aspects of data mining including contextual data, end-user privacy preservation,
data management and scalability. Yuan, Herbert & Emamian (2014) and Yuan & Herbert
(2014) introduced cloud-based mobile data analytics framework with application case
study for smart home based monitoring system. Cuzzocrea, Psaila & Toccu (2016) have
presented innovative FollowMe suite which implements data mining framework for mobile
social media analytics with several tools with respective architecture and functionalities.
An interesting paper was presented by Torres et al. (2017) who addressed data mining
methodology and its implementation for congestion prediction in mobile LTE networks
tackling also feedback reaction with network reconfigurations trigger.

Further, Biliri et al. (2014) presented cloud-based Future Internet Enabler—automated
social data analytics solution which also addresses Social Network Interoperability aspect
supporting enterprises to interconnect and utilize social networks for collaboration.
Real-time social media streamed data and resulting data mining methodology and
application was extensively discussed by Zhang, Lau & Li (2014). Authors proposed design
of comprehensive ABIGDAD framework with seven main components implementing
data mining based deceptive review identification. Interdisciplinary study tackling both
these topics was developed by Puthal et al. (2016) who proposed integrated framework
and architecture of disaster management system based on streamed data in cloud
environment ensuring end-to-end security. Additionally, key extensions to data mining
framework have been proposed merging variety of data sources and types, security
verification and data flow access controls. Finally, cloud-based manufacturing was
addressed in the context of fault diagnostics by Kumar et al. (2016).

Also, Mahmood et al. (2013) tackled Wireless Sensor Networks and associated data
mining framework required extensions. Interesting work is executed by Nestorov & Jukic
(2003) addressing rare topic of data mining solutions integration within traditional data
warehouses and active mining of data repositories themselves.

Supported by new generation of visualization technologies (including Virtual Reality
environments), Wijayasekara, Linda & Manic (2011) proposed and implemented
CAVE-SOM (3D visual data mining framework) which offers interactive, immersive visual
data mining with multiple visualization modes supported by plethora of methods. Earlier
version of visual data mining framework was successfully developed and presented by
Ganesh et al. (1996) as early as in 1996.

Large-scale social media data is successfully tackled by Lemieux (2016) with
comprehensive framework accompanied by set of data mining tools and interface. Real
time data analytics was addressed by Shrivastava & Pal (2017) in the domain of enterprise
service ecosystem. Images data was addressed in Huang et al. (2002) by proposing
multimedia data mining framework and its implementation with user relevance feedback
integration and instance learning. Further, exploded data diversity and associated need to
extend standard data mining is addressed by Singh et al. (2016) in the study devoted to
object detection in video surveillance systems supporting real time video analysis.
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Finally, there is also limited number of studies which addresses context awareness
(Purpose 4) and extends data mining methodology with context elements and
adjustments. In comparison with ‘Integration’ category research, here, the studies are
at lower abstraction level, capturing and presenting list of adjustments. Singh, Vajirkar &
Lee (2003) generate taxonomy of context factors, develop extended data mining framework
and propose deployment including detailed IS architecture. Context-awareness aspect
is also addressed in the papers reviewed above, for example, Lenz, Wuest & Westkämper
(2018), Kisilevich, Keim & Rokach (2013), Sun et al. (2015), and other studies.

Integration
‘Integration’ of data mining methodologies scenario was identified in 27 ‘peer-reviewed’
and 17 ‘grey’ studies. Our analysis revealed that this adaptation scenario at a higher
abstraction level is typically executed with the five key purposes:

1. Purpose 1: to integrate/combine with various ontologies existing in organization.

2. Purpose 2: to introduce context-awareness and incorporate domain knowledge.

3. Purpose 3: to integrate/combine with other research or industry domains framework,
process methodologies and concepts.

4. Purpose 4: to integrate/combine with other well-known organizational governance
frameworks, process methodologies and concepts.

5. Purpose 5: to accommodate and/or leverage upon newly available Big Data
technologies, tools and methods.

The specific list of studies mapped to each of the given purposes presented in Appendix
(Table A2). Main purposes of adaptations, associated gaps and/or benefits along with
observations and artifacts are documented in Fig. 11 below.

As mentioned, number of studies concentrates on proposing ontology-based Integrated
data mining frameworks accompanies by various types of ontologies (Purpose 1). For
example, Sharma & Osei-Bryson (2008) focus on ontology-based organizational view
with Actors, Goals and Objectives which supports execution of Business Understanding
Phase. Brisson & Collard (2008) propose KEOPS framework which is CRISP-DM
compliant and integrates a knowledge base and ontology with the purpose to build
ontology-driven information system (OIS) for business and data understanding phases
while knowledge base is used for post-processing step of model interpretation. Park et al.
(2017) propose and design comprehensive ontology-based data analytics tool IRIS with
the purpose to align analytics and business. IRIS is based on concept to connect
dots, analytics methods or transforming insights into business value, and supports
standardized process for applying ontology to match business problems and solutions.

Further, Ying et al. (2014) propose domain-specific data mining framework oriented to
business problem of customer demand discovery. They construct ontology for customer
demand and customer demand discovery task which allows to execute structured
knowledge extraction in the form of knowledge patterns and rules. Here, the purpose is to
facilitate business value realization and support actionability of extracted knowledge

Plotnikova et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.267 26/43

http://dx.doi.org/10.7717/peerj-cs.267
https://peerj.com/computer-science/


via marketing strategies and tactics. In the same vein, Cannataro & Comito (2003)
presented ontology for the Data Mining domain which main goal is to simplify the
development of distributed knowledge discovery applications. Authors offered to a domain
expert a reference model for different kind of data mining tasks, methodologies, and
software capable to solve the given business problem and find the most appropriate
solution.

Apart from ontologies, Sharma & Osei-Bryson (2009) in another study propose IS
inspired, driven by Input-Output model data mining methodology which supports formal
implementation of Business Understanding Phase. This research exemplifies studies
executed with Purpose 2. The goal of the paper is to tackle prescriptive nature of CRISP-DM
and address how the entire process can be implemented. Cao, Schurmann & Zhang (2005)
study is also exemplary in terms of aggregating and introducing several fundamental
concepts into traditional CRISP-DM data mining cycle—context awareness, in-depth
pattern mining, human–machine cooperative knowledge discovery (in essence, following
human-centricity paradigm in data mining), loop-closed iterative refinement process
(similar to Agile-based methodologies in Software Development). There are also several
concepts, like data, domain, interestingness, rules which are proposed to tackle number of
fundamental constrains identified in CRISP-DM. They have been discussed and further
extended by Cao & Zhang (2007, 2008), Cao (2010) into integrated domain driven data
mining concept resulting in fully fledged D3M (domain-driven) data mining framework.
Interestingly, the same concepts, but on individual basis are investigated and presented by
other authors, for example, context-aware data mining methodology is tackled by Xiang
(2009a, 2009b) in the context of financial sector. Pournaras et al. (2016) attempted very
crucial privacy-preservation topic in the context of achieving effective data analytics

Figure 11 ‘Integration’ scenario adaptations goals, benefits, artifacts and number of publications for
period 1997–2018. Full-size DOI: 10.7717/peerj-cs.267/fig-11
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methodology. Authors introduced metrics and self-regulatory (reconfigurable) information
sharing mechanism providing customers with controls for information disclosure.

A number of studies have proposed CRISP-DM adjustments based on existing
frameworks, process models or concepts originating in other domains (Purpose 3), for
example, software engineering (Marbán et al., 2007, 2009; Marban, Mariscal & Segovia,
2009) and industrial engineering (Solarte, 2002; Zhao et al., 2005).

Meanwhile,Mariscal, Marbán & Fernández (2010) proposed a new refined data mining
process based on a global comparative analysis of existing frameworks while Angelov
(2014) outlined a data analytics framework based on statistical concepts. Following a
similar approach, some researchers suggest explicit integration with other areas and
organizational functions, for example, BI-driven Data Mining by Hang & Fong (2009).
Similarly, Chen, Kazman & Haziyev (2016) developed an architecture-centric agile Big
Data analytics methodology, and an architecture-centric agile analytics and DevOps
model. Alternatively, several authors tackled data mining methodology adaptations in
other domains, for example, educational data mining by Tavares, Vieira & Pedro (2017),
decision support in learning management systems (Murnion & Helfert, 2011), and in
accounting systems (Amani & Fadlalla, 2017).

Other studies are concerned with actionability of data mining and closer integration
with business processes and organizational management frameworks (Purpose 4). In
particular, there is a recurrent focus on embedding data mining solutions into knowledge-
based decision making processes in organizations, and supporting fast and effective
knowledge discovery (Bohanec, Robnik-Sikonja & Borstnar, 2017).

Examples of adaptations made for this purpose include: (1) integration of CRISP-DM
with the Balanced Scorecard framework used for strategic performance management in
organizations (Yun, Weihua & Yang, 2014); (2) integration with a strategic decision-
making framework for revenue management Segarra et al. (2016); (3) integration with a
strategic analytics methodology Van Rooyen & Simoff (2008), and (4) integration with a
so-called ‘Analytics Canvas’ for management of portfolios of data analytics projects
Kühn et al. (2018). Finally, Ahangama & Poo (2015) explored methodological attributes
important for adoption of data mining methodology by novice users. This latter study
uncovered factors that could support the reduction of resistance to the use of data mining
methodologies. Conversely, Lawler & Joseph (2017) comprehensively evaluated factors
that may increase the benefits of Big Data Analytics projects in an organization.

Lastly, a number of studies have proposed data mining frameworks (e.g., CRISP-DM)
adaptations to cater for new technological architectures, new types of datasets and
applications (Purpose 5). For example, Lu et al. (2017) proposed a data mining system based
on a Service-Oriented Architecture (SOA), Zaghloul, Ali-Eldin & Salem (2013) developed a
concept of self-service data analytics, Osman, Elragal & Bergvall-Kåreborn (2017)
blended CRISP-DM into a Big Data Analytics framework for Smart Cities, and Niesen et al.
(2016) proposed a data-driven risk management framework for Industry 4.0 applications.

Our analysis of RQ3, regarding the purposes of existing data mining methodologies
adaptations, revealed the following key findings. Firstly, adaptations of type ‘Modification’
are predominantly targeted at addressing problems that are specific to a given case study.
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The majority of modifications were made within the domain of IS security, followed by
case studies in the domains of manufacturing and financial services. This is in clear
contrast with adaptations of type ‘Extension’, which are primarily aimed at customizing
the methodology to take into account specialized development environments and
deployment infrastructures, and to incorporate context-awareness aspects. Thirdly, a
recurrent purpose of adaptations of type ‘Integration’ is to combine a data mining
methodology with either existing ontologies in an organization or with other domain
frameworks, methodologies, and concepts. ‘Integration’ is also used to instill context-
awareness and domain knowledge into a data mining methodology, or to adapt it to
specialized methods and tools, such as Big Data. The distinctive outcome and value
(gaps filled in) of ‘Integrations’ stems from improved knowledge discovery, better
actionability of results, improved combination with key organizational processes and
domain-specific methodologies, and improved usage of Big Data technologies.

Summary
We discovered that the adaptations of existing data mining methodologies found in the
literature can be classified into three categories: modification, extension, or integration.

We also noted that adaptations are executed either to address deficiencies and lack
of important elements or aspects in the reference methodology (chiefly CRISP-DM).
Furthermore, adaptations are also made to improve certain phases, deliverables or process
outcomes.

In short, adaptations are made to:

� improve key reference data mining methodologies phases—for example, in case of
CRISP-DM these are primarily business understanding and deployment phases.

� support knowledge discovery and actionability.

� introduce context-awareness and higher degree of formalization.

� integrate closer data mining solution with key organizational processes and frameworks.

� significantly update CRISP-DM with respect to Big Data technologies, tools,
environments and infrastructure.

� incorporate broader, explicit context of architectures, algorithms and toolsets as integral
deliverables or supporting tools to execute data mining process.

� expand and accommodate broader unified perspective for incorporating and
implementing data mining solutions in organization, IT infrastructure and business
processes.

THREATS TO VALIDITY
Systematic literature reviews have inherent limitations that must be acknowledged. These
threats to validity include subjective bias (internal validity) and incompleteness of search
results (external validity).

The internal validity threat stems from the subjective screening and rating of studies,
particularly when assessing the studies with respect to relevance and quality criteria.
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We have mitigated these effects by documenting the survey protocol (SLR Protocol),
strictly adhering to the inclusion criteria, and performing significant validation procedures,
as documented in the Protocol.

The external validity threat relates to the extent to which the findings of the SLR
reflect the actual state of the art in the field of data mining methodologies, given that the
SLR only considers published studies that can be retrieved using specific search strings
and databases. We have addressed this threat to validity by conducting trial searches to
validate our search strings in terms of their ability to identify relevant papers that we knew
about beforehand. Also, the fact that the searches led to 1,700 hits overall suggests that a
significant portion of the relevant literature has been covered.

CONCLUSION
In this study, we have examined the use of data mining methodologies by means of a
systematic literature review covering both peer-reviewed and ‘grey’ literature. We have
found that the use of data mining methodologies, as reported in the literature, has grown
substantially since 2007 (four-fold increase relative to the previous decade). Also, we
have observed that data mining methodologies were predominantly applied ‘as-is’ from
1997 to 2007. This trend was reversed from 2008 onward, when the use of adapted data
mining methodologies gradually started to replace ‘as-is’ usage.

The most frequent adaptations have been in the ‘Extension’ category. This category
refers to adaptations that imply significant changes to key phases of the reference
methodology (chiefly CRISP-DM). These adaptations particularly target the business
understanding, deployment and implementation phases of CRISP-DM (or other
methodologies). Moreover, we have found that the most frequent purposes of adaptions
are: (1) adaptations to handle Big Data technologies, tools and environments (technological
adaptations); and (2) adaptations for context-awareness and for integrating data
mining solutions into business processes and IT systems (organizational adaptations).
A key finding is that standard data mining methodologies do not pay sufficient attention to
deployment aspects required to scale and transform data mining models into software
products integrated into large IT/IS systems and business processes.

Apart from the adaptations in the ‘Extension’ category, we have also identified an
increasing number of studies focusing on the ‘Integration’ of data mining methodologies
with other domain-specific and organizational methodologies, frameworks, and concepts.
These adaptions are aimed at embedding the data mining methodology into broader
organizational aspects.

Overall, the findings of the study highlight the need to develop refinements of existing
data mining methodologies that would allow them to seamlessly interact with IT
development platforms and processes (technological adaptation) and with organizational
management frameworks (organizational adaptation). In other words, there is a need to
frame existing data mining methodologies as being part of a broader ecosystem of
methodologies, as opposed to the traditional view where data mining methodologies are
defined in isolation from broader IT systems engineering and organizational management
methodologies.

Plotnikova et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.267 30/43

http://dx.doi.org/10.7717/peerj-cs.267
https://peerj.com/computer-science/


APPENDICES

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Table A1 ‘Extension’ paradigm data mining methodologies application studies for period 1997–2018.

Main adaptation purpose Publications

(1) To implement fully scaled, integrated
data mining solution

Sun et al. (2015),Hu et al. (2010),Wang (2015),Du et al. (2017), Çinicioğlu et al. (2011),Doreswamy (2008),
Güder et al. (2014), Simoff & Galloway (2008), Deng, Purvis & Purvis (2011), Xu & Qiu (2008), Shin &
Jeong (2005), Chee, Baharudin & Karkonasasi (2016), Zhang (2009), Ding & Daniel (2007), Liu et al.
(2018), Shao, Liu & Zhu (2008)

(2) To implement complex systems and
integrated business applications with
data mining model/solution as
component or tool

Mobasher (2007), Singh et al. (2014), Alazab et al. (2011), Kisilevich, Keim & Rokach (2013),
Haruechaiyasak, Shyu & Chen (2004), Luna, Castro & Romero (2017), Khan, Mohamudally & Babajee
(2013), Ortega et al. (2015), Lau, Zhang & Xu (2018), Ahmed, Rafique & Abulaish (2011), Capozzoli et al.
(2017), Kabir (2016), Kiayias et al. (2009), Kamrani, Rong & Gonzalez (2001), Büchner & Mulvenna
(1998), Shahbaz et al. (2010), Lee et al. (2000, 2001), Barbará et al. (2001), Lenz, Wuest & Westkämper
(2018)

(3) To implement data mining as part of
integrated/combined specialized
infrastructure,data environments and
types (e.g., IoT, cloud, mobile networks)

Strohbach et al. (2015), Mahmood et al. (2013), Nestorov & Jukic (2003), Gomes, Phua & Krishnaswamy
(2013), Wijayasekara, Linda & Manic (2011), Yuan & Herbert (2014), Bashir & Gill (2016), Cuzzocrea,
Psaila & Toccu (2016), Biliri et al. (2014), Rendall et al. (2017), Zhang, Lau & Li (2014), Yuan, Herbert &
Emamian (2014), Huang et al. (2002), Singh et al. (2016), Shrivastava & Pal (2017), Lemieux (2016),
Ganesh et al. (1996), Torres et al. (2017), Zhong et al. (2017), Puthal et al. (2016), Kumar et al. (2016)

(4) To incorporate context-awareness
aspects

Singh, Vajirkar & Lee (2003)

Table A2 ‘Integration’ paradigm data mining methodologies application studies for period 1997–2018.

Main adaptation purpose Publications

(1) To integrate/combined with various
ontologies existing in organization

Sharma & Osei-Bryson (2008, 2009), Brisson & Collard (2008), Park et al. (2017), Ying et al. (2014),
Cannataro & Comito (2003)

(2) To introduce context-awareness and
incorporate domain knowledge

Cao, Schurmann & Zhang (2005), Cao & Zhang (2007, 2008), Xiang (2009a, 2009b), Pournaras et al.
(2016), Cao (2010)

(3) To integrate/combine with other
research/industry domains frameworks,
process methodologies, and concepts

Marbán et al. (2007), Zhao et al. (2005), François (2008), Hang & Fong (2009), Tavares, Vieira & Pedro
(2017), Murnion & Helfert (2011), Amani & Fadlalla (2017), Marban, Mariscal & Segovia (2009),
Mariscal, Marbán & Fernández (2010), Solarte (2002), Marbán et al. (2009), Chen, Kazman & Haziyev
(2016), Ahangama & Poo (2015), Angelov (2014)

(4) To integrate/combine with other
organizational governance frameworks,
process methodologies, concepts

Bohanec, Robnik-Sikonja & Borstnar (2017), Debuse (2007), Chatzikonstantinou, Kontogiannis & Attarian
(2013), Rahman, Desa & Wibowo (2011), Yun, Weihua & Yang (2014), Van Rooyen & Simoff (2008),
Kühn et al. (2018), Segarra et al. (2016), Lawler & Joseph (2017)

(5) To accomodate or leverage upon
newly available Big Data technologies,
tools and methods

Lu et al. (2017), Osman, Elragal & Bergvall-Kåreborn (2017), Behbahani, Khaddaj & Choudhury (2011),
Deng, Ghanem & Guo (2009), Kurgan &Musilek (2006), Zaghloul, Ali-Eldin & Salem (2013), Niesen et al.
(2016)
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